Solutions Série d'exercices : Calcul intégral -Ts
Exercice 1
I = \(\int_{1}^{3} \dfrac{2x+1}{x^{2}+x+1} dx\)
Le numérateur \(2x+1\) est la dérivée du dénominateur \(x^2 + x + 1\). Ainsi, la primitive est \(\ln|x^2 + x + 1|\). Comme \(x^2 + x + 1 > 0\) pour tout \(x\) (discriminant négatif), on peut omettre la valeur absolue.
\[\begin{array}{rcl}
I &=& \left[ \ln(x^2 + x + 1) \right]_{1}^{3} \\&=& \ln(3^2 + 3 + 1) - \ln(1^2 + 1 + 1) \\&=& \ln(13) - \ln(3) \\&=& \ln\left(\dfrac{13}{3}\right)\end{array}
\]
J = \(\int_{2}^{3} \dfrac{2}{\sqrt{u}} du\)
\[\begin{array}{rcl}
J &=& \int_{2}^{3} 2 u^{-1/2} du \\&=& \left[ 2 \cdot \dfrac{u^{1/2}}{1/2} \right]_{2}^{3} \\&=& \left[ 4 \sqrt{u} \right]_{2}^{3} \\&=& 4\sqrt{3} - 4\sqrt{2}\\& =& 4(\sqrt{3} - \sqrt{2})\end{array}
\]
K = \(\int_{-1}^{2} (x+1)(x^{2}+2x-7) dx\)
Développer l'expression :
\[\begin{array}{array}{rcl}
(x+1)(x^2 + 2x - 7) &=& x^3 + 2x^2 - 7x + x^2 + 2x - 7 \\&=& x^3 + 3x^2 - 5x - 7\end{array}
\]
Primitive :
\[
\int (x^3 + 3x^2 - 5x - 7) dx = \dfrac{1}{4}x^4 + x^3 - \dfrac{5}{2}x^2 - 7x
\]
Calculer :
\[\begin{array}{rcl}
K &=& \left[ \dfrac{1}{4}x^4 + x^3 - \dfrac{5}{2}x^2 - 7x \right]_{-1}^{2} \\&=& \left( \dfrac{1}{4}(16) + 8 - \dfrac{5}{2}(4) - 14 \right) - \left( \dfrac{1}{4}(1) + (-1) - \dfrac{5}{2}(1) - 7(-1) \right) \\&=& (4 + 8 - 10 - 14) - \left( \dfrac{1}{4} - 1 - \dfrac{5}{2} + 7 \right) \\&=& (-12) - \left( \dfrac{1}{4} - \dfrac{5}{2} + 6 \right)\end{array}
\]
\[\begin{array}{rcl}
\dfrac{1}{4} - \dfrac{5}{2} + 6 &=& \dfrac{1}{4} - \dfrac{10}{4} + \dfrac{24}{4} \\&=& \dfrac{15}{4}, \quad K \\&=& -12 - \dfrac{15}{4} \\&=& -\dfrac{48}{4} - \dfrac{15}{4}\\& =& -\dfrac{63}{4}\end{array}
\]
L = \(\int_{1}^{3} \dfrac{dt}{t+1}\)
Primitive : \(\ln|t+1|\). Comme \(t+1 > 0\) sur \([1, 3]\),
\[\begin{array}{rcl}
L &=& \left[ \ln(t+1) \right]_{1}^{3} \\&=& \ln(4) - \ln(2) \\&=& \ln\left(\dfrac{4}{2}\right) \\&=& \ln(2)\end{array}
\]
M = \(\int_{0}^{\dfrac{\pi}{2}} \cos^{2}x \sin x dx\)
Poser \(u = \cos x\), alors \(du = -\sin x dx\). Quand \(x = 0\), \(u = 1\); quand \(x = \dfrac{\pi}{2}\), \(u = 0\).
\[\begin{array}{rcl}
M &=& \int_{1}^{0} u^2 (-du) \\&=& \int_{0}^{1} u^2 du \\&=& \left[ \dfrac{u^3}{3} \right]_{0}^{1} \\&=& \dfrac{1}{3} - 0 \\&=& \dfrac{1}{3}\end{array}
\]
N = \(\int_{-3}^{3} x e^{2} dx\)
\(e^2\) est constant, et \(x\) est impaire sur \([-3, 3]\) symétrique par rapport à 0.
\[\begin{array}{rcl}
N &=& e^2 \int_{-3}^{3} x dx \\&=& e^2 \left[ \dfrac{x^2}{2} \right]_{-3}^{3} \\&=& e^2 \left( \dfrac{9}{2} - \dfrac{9}{2} \right) \\&=& e^2 \cdot 0 \\&=& 0\end{array}
\]
Exercice 2
1) $\int_{0}^{5}(x^{4}-x^{2})\,dx$
$$
\begin{aligned}
\int(x^4-x^2) dx &=& \dfrac{x^5}{5}-\dfrac{x^3}{3}\\
\left[\,\dfrac{x^5}{5}-\dfrac{x^3}{3}\,\right]_0^5 &=& \left(\dfrac{5^5}{5}-\dfrac{5^3}{3}\right)-0\\
&=& (5^4)-\dfrac{125}{3}\\&=&625-\dfrac{125}{3}\\&=&\dfrac{1875-125}{3}\\&=&\dfrac{1750}{3}
\end{aligned}
$$
2) $\int_{1}^{2}(2x^2+5x-1)\,dx$
$$\
\begin{aligned}
\int(2x^2+5x-1) dx = \dfrac{2x^3}{3}+\dfrac{5x^2}{2}-x\\
\left[\dfrac{2x^3}{3}+\dfrac{5x^2}{2}-x\right]_1^2 &= \left(\dfrac{2(8)}{3}+\dfrac{5(4)}{2}-2\right)-\left(\dfrac{2(1)}{3}+\dfrac{5(1)}{2}-1\right)
&\left(\dfrac{16}{3}+10-2\right)-\left(\dfrac{2}{3}+\dfrac{5}{2}-1\right)\\
&=\left(\dfrac{16}{3}+8\right)-\left(\dfrac{2}{3}+\dfrac{3}{2}\right)\\
&=\dfrac{40}{3}-\dfrac{10}{6}\\&=\dfrac{40}{3}-\dfrac{5}{3}\&=&\dfrac{35}{3}
\end{aligned}
$$
3) $\int_{0}^{4}(2x^5+2x^3-1)\,dx$
$$
\begin{aligned}
\int(2x^5+2x^3-1)dx &=& \dfrac{2x^6}{6}+\dfrac{2x^4}{4}-x \\&=& \dfrac{x^6}{3}+\dfrac{x^4}{2}-x\\
\left[\dfrac{x^6}{3}+\dfrac{x^4}{2}-x\right]_0^4 \\&=& \dfrac{4^6}{3}+\dfrac{4^4}{2}-4 \\
&=& \dfrac{4096}{3}+\dfrac{256}{2}-4 \\&=& \dfrac{4096}{3}+128-4\\
&=& \dfrac{4096}{3}+124 \\&=& \dfrac{4096}{3}+\dfrac{372}{3}\\&=&\dfrac{4468}{3}
\end{aligned}
$$
4) $\int_{2}^{5}\dfrac{dx}{\sqrt{x-1}}$
Substituons $u=x-1$, $du=dx$,
bornes : $x=2 \to u=1,\ x=5\to u=4$.
$$
\begin{aligned}
\int_{1}^{4}\dfrac{du}{\sqrt{u}} &=& \int_{1}^{4} u^{-1/2}du \\&=& \left[2u^{1/2}\right]_1^4 \\
&=&2(\sqrt{4}-\sqrt{1})\\&=&2(2-1)\\&=&2
\end{aligned}
$$
5) $\int_{1}^{2}(x+5)^4\,dx$
Substituons $u=x+5 \implies du=dx,$ bornes: $x=1 \to u=6,\ x=2\to u=7$.
$$\begin{array}{rcl}
\int_{6}^{7}u^4\,du &=& \dfrac{u^5}{5}\Big|_{6}^{7} \\&=& \dfrac{7^5-6^5}{5}\\&=&\dfrac{16807-7776}{5}\\&=&\dfrac{9031}{5}\end{array}
$$
6) $\int_{1}^{5}\left(x^2+\dfrac{2}{x^2}\right)\,dx$
$$
\begin{aligned}
\int\left(x^2+2x^{-2}\right) dx &= \dfrac{x^3}{3}-2 x^{-1} \\
\left[\dfrac{x^3}{3}-\dfrac{2}{x}\right]_1^5 &= \left(\dfrac{125}{3}-\dfrac{2}{5}\right)-\left(\dfrac{1}{3}-2\right) \\
&= \left(\dfrac{125}{3}-\dfrac{2}{5}\right)-\left(\dfrac{1}{3}-\dfrac{6}{3}\right) \\
&= \dfrac{125}{3}-\dfrac{2}{5}-\dfrac{1-6}{3} = \dfrac{125}{3}-\dfrac{2}{5}+\dfrac{5}{3}\\
&= \dfrac{130}{3}-\dfrac{2}{5}=\dfrac{650}{15}-\dfrac{6}{15}=\dfrac{644}{15}
\end{aligned}
$$
7) $\int_{0}^{1}\left(2x^2-1-\dfrac{1}{(x+1)^2}\right)\,dx$
$$
\begin{aligned}
\int(2x^2-1-(x+1)^{-2}) dx &= \dfrac{2x^3}{3}-x+(x+1)^{-1} \\
\left[\dfrac{2x^3}{3}-x+(x+1)^{-1}\right]_0^1 &= \left(\dfrac{2}{3}-1+\dfrac{1}{2}\right)-\left(0-0+1\right)\\
&=\left(-\dfrac{1}{3}+\dfrac{1}{2}\right)-1 \\&= \dfrac{-2+3}{6}-1\\&=\dfrac{1}{6}-1\\&=-\dfrac{5}{6}
\end{aligned}
$$
8) $\int_{-1}^{2}\dfrac{2x+1}{(x^2+x+1)^2}\,dx$
Substituons $u=x^2+x+1 \implies du=(2x+1)dx$.
Bornes : $x=-1\to u=(-1)^2+(-1)+1=1,\ x=2\to u=2^2+2+1=7$.
$$
\begin{array}{rcl}\begin{aligned}
\int_{1}^{7} u^{-2}\,du &=& \left[-\dfrac{1}{u}\right]_1^7 \\&=& -\dfrac{1}{7}+1=\dfrac{6}{7}
\end{aligned}\end{array}
$$
9) $\int_{-1}^{2}\dfrac{x+1}{\sqrt{x^2+7}}\,dx$
Substituons $u=x^2+7 \implies du=2x\,dx$, mais il y a $x+1$, ce qui rend le changement compliqué.
Vérifions plutôt :
$(x+1)dx = x\,dx + dx.$ Séparons :
$\int_{-1}^2 \dfrac{x\,dx}{\sqrt{x^2+7}}+\int_{-1}^2\dfrac{dx}{\sqrt{x^2+7}}.$
Partie 1 : $\int_{-1}^2 \dfrac{x\,dx}{\sqrt{x^2+7}}$
$$\begin{array}{rcl}
u&=&x^2+7\implies du\\&=&2x\,dx \implies \int \dfrac{x\,dx}{\sqrt{x^2+7}}\\&=&\dfrac{1}{2}\int u^{-1/2}\,du\\&=&\sqrt{u}+C\\&=&\sqrt{x^2+7}
\end{array}$$
\[\sqrt{x^2+7}]\_{-1}^2=\sqrt{11}-\sqrt{8}= \sqrt{11}-2\sqrt2$
Partie 2 : $\int_{-1}^2 \dfrac{dx}{\sqrt{x^2+7}}$ est une forme standard :
$$\begin{array}{rcl}
\int \dfrac{dx}{\sqrt{x^2+a^2}}&=&\ln|x+\sqrt{x^2+a^2}|+C,\ a\\&=&\sqrt7\end{array}
$$
$$\begin{array}{rcl}
\left[\ln\left|x+\sqrt{x^2+7}\right|\right]_{-1}^2&=&\ln(2+\sqrt{11})-\ln(-1+\sqrt{8})\\&=&\ln(2+\sqrt{11})-\ln(\sqrt8-1)\end{array}
$$
Somme des deux parties :
$$
I_9 = (\sqrt{11}-2\sqrt2)+\ln\dfrac{2+\sqrt{11}}{\sqrt8-1}
$$
10) $\int_{-1}^{2}(x^3-5^2+1)^4(3x^2-10)\,dx$
Cette expression semble contenir une coquille $(5^2=25)$ :
$(x^3-25+1)^4(3x^2-10) = (x^3-24)^4(3x^2-10).$
Faisons $u=x^3-24 \implies du=3x^2\,dx$, il reste $-10\,dx$ :
On découpe l’intégrale :
$$
\int_{-1}^2 (x^3-24)^4(3x^2)\,dx-\int_{-1}^2 10(x^3-24)^4\,dx
$$
Première partie :
$$\begin{array}{rcl}
\int_{-1}^2 (x^3-24)^4(3x^2\,dx) &=& \int_{u(-1)}^{u(2)} u^4\,du \\&\text{ avec }& u(-1)\\&=&-1-24\\&=&-25,\ u(2)\\&=&8-24\\&=&-16\\
\int_{-25}^{-16} u^4\,du \\&=& \dfrac{u^5}{5}\Big|_{-25}^{-16}\\&=&\dfrac{(-16)^5-(-25)^5}{5}\end{array}
$$
Deuxième partie :
$$
-10 \int_{-1}^2 (x^3-24)^4\,dx \text{ est moins direct.}
$$
Exercice 3
1) \(f(x) = \dfrac{x+1}{x+2} = a + \dfrac{b}{x+2}\)
\[\begin{array}{rcl}
\dfrac{x+1}{x+2} &=& 1 + \dfrac{-1}{x+2}, \quad \\&\text{ donc }& a \\&=& 1, b \\&=& -1\end{array}
\]
\[\begin{array}{rcl}
I &=& \int_{1}^{2} \left( 1 - \dfrac{1}{x+2} \right) dx \\&=& \left[ x - \ln|x+2| \right]_{1}^{2} \\&=& (2 - \ln 4) - (1 - \ln 3) \\&=& 1 + \ln\left(\dfrac{3}{4}\right)\end{array}
\]
2) \(f(x) = \dfrac{x^{2}+x+1}{x-3} = ax + b + \dfrac{c}{x-3}\)
\[\begin{array}{rcl}
\dfrac{x^2 + x + 1}{x-3} &=& x + 4 + \dfrac{13}{x-3}, \quad \\&\text{ donc }& a \\&=& 1, b \\&=& 4, c \\&=& 13
\end{array}\]
\[\begin{array}{rcl}
I &=& \int_{0}^{1} \left( x + 4 + \dfrac{13}{x-3} \right) dx \\&=& \left[ \dfrac{x^2}{2} + 4x + 13 \ln|x-3| \right]_{0}^{1} \\&=& \left( \dfrac{1}{2} + 4 + 13 \ln 2 \right) - (0 + 0 + 13 \ln 3) \\&=& \dfrac{9}{2} + 13 \ln\left(\dfrac{2}{3}\right)\end{array}
\]
3) \(f(x) = \dfrac{2x+1}{x^{2}-5x+4} = \dfrac{a}{x-1} + \dfrac{b}{x-4}\)
Le dénominateur est \((x-1)(x-4)\).
\[\begin{array}{rcl}
\dfrac{2x+1}{(x-1)(x-4)} &=& \dfrac{-1}{x-1} + \dfrac{3}{x-4}, \quad \\&\text{donc }& a = -1, b = 3
\end{array}\]
\[\begin{array}{rcl}
I &=& \int_{2}^{3} \left( -\dfrac{1}{x-1} + \dfrac{3}{x-4} \right) dx \\&=& \left[ -\ln|x-1| + 3 \ln|x-4| \right]_{2}^{3} \\&=& (-\ln 2 + 3 \ln 1) - (-\ln 1 + 3 \ln 2) \\&=& (-\ln 2) - (3 \ln 2) \\&=& -4 \ln 2\end{array}
\]
4) \(f(x) = \dfrac{x-2}{(x-1)^{2}} = \dfrac{a}{x-1} + \dfrac{b}{(x-1)^{2}}\)
\[
\dfrac{x-2}{(x-1)^2} = \dfrac{1}{x-1} - \dfrac{1}{(x-1)^2}, \quad \text{donc } a = 1, b = -1
\]
\[\begin{array}{rcl}
I &=& \int_{-1}^{0} \left( \dfrac{1}{x-1} - \dfrac{1}{(x-1)^2} \right) dx \\&=& \left[ \ln|x-1| + \dfrac{1}{x-1} \right]_{-1}^{0} \\&=& \left( \ln 1 - 1 \right) - \left( \ln 2 - \dfrac{1}{2} \right) \\&=& (-1) - \left( \ln 2 - 0.5 \right) \\&=& -0.5 - \ln 2
\end{array}\]
5) \(f(x) = \dfrac{1}{x(x^{2}+1)} = \dfrac{a}{x} + \dfrac{bx+c}{x^{2}+1}\)
\[
\dfrac{1}{x(x^2+1)} = \dfrac{1}{x} - \dfrac{x}{x^2+1}, \quad \text{donc } a = 1, b = -1, c = 0
\]
Les bornes sont identiques (\(x=1\) à \(x=1\)), donc \(I = 0\).
6) \(f(x) = \dfrac{e^{x}-2}{e^{x}+1} = a + \dfrac{b e^{-x}}{1 + e^{-x}}\)
\[\begin{array}{rcl}
\dfrac{e^x - 2}{e^x + 1} &=& 1 - \dfrac{3}{e^x + 1}, \quad \text{et } \dfrac{3}{e^x + 1} \\&=& \dfrac{3 e^{-x}}{1 + e^{-x}}, \quad \\&\text{donc }& a = 1, b = -3\end{array}
\]
\[
I = \int_{\ln 2}^{\ln 3} \left( 1 - \dfrac{3}{e^x + 1} \right) dx
\]
Primitive de \(\dfrac{1}{e^x + 1}\) : poser \(u = e^x\), \(du = e^x dx\), \(dx = \dfrac{du}{u}\),
\[\begin{array}{rcl}
\int \dfrac{dx}{e^x + 1} &=& \int \dfrac{du}{u(u+1)} \\&=& \int \left( \dfrac{1}{u} - \dfrac{1}{u+1} \right) du \\&=& \ln|u| - \ln|u+1| \\&=& x - \ln(e^x + 1)\end{array}
\]
Ainsi,
\[\begin{array}{rcl}
I &=& \left[ x - 3(x - \ln(e^x + 1)) \right]_{\ln 2}^{\ln 3} \\&=& \left[ -2x + 3 \ln(e^x + 1) \right]_{\ln 2}^{\ln 3} \\&=& \left( -2 \ln 3 + 3 \ln(4) \right) - \left( -2 \ln 2 + 3 \ln(3) \right) \\&=& -2 \ln 3 + 6 \ln 2 + 2 \ln 2 - 3 \ln 3 \\&=& 8 \ln 2 - 5 \ln 3 \\&=& \ln\left(\dfrac{256}{243}\right)\end{array}
\]
Exercice 4
1) Calculer la dérivée de
$$
f(x) = (ax^2+bx+c)\sqrt{x^2+2}
$$
Calcul de $f'(x)$ :
On pose :
$$
u(x) = ax^2+bx+c,\quad v(x) = \sqrt{x^2+2}.
$$
La dérivée :
$$
u'(x) = 2ax+b,\quad v'(x) = \dfrac{x}{\sqrt{x^2+2}}.
$$
$$
f'(x) = u'(x)\,v(x) + u(x)\,v'(x) = (2ax+b)\sqrt{x^2+2}+(ax^2+bx+c)\dfrac{x}{\sqrt{x^2+2}}.
$$
Mettons sur le même dénominateur $\sqrt{x^2+2}$ :
$$
f'(x) = \dfrac{(2ax+b)(x^2+2) + x(ax^2+bx+c)}{\sqrt{x^2+2}}.
$$
Développons le numérateur :
$$
(2ax+b)(x^2+2)+ x(ax^2+bx+c) = 2ax^3+b x^2+4ax+2b + ax^3+b x^2+c x.
$$
Regroupons les termes :
$$
\text{Num} = 3ax^3 + 2b x^2+(4a+c)x+2b.
$$
Ainsi :
$$
\boxed{f'(x) = \dfrac{3ax^3+2b x^2+(4a+c)x+2b}{\sqrt{x^2+2}}.}
$$
2) Calculer
$$
\int_{-1}^{4}\dfrac{6x^3+2x^2+9x+2}{\sqrt{x^2+2}}\,dx.
$$
Comparons au numérateur de $f'(x)$ :
On identifie :
$$
3a=6\implies a=2,\quad 2b=2\implies b=1,\quad 4a+c=9\implies 8+c=9\implies c=1,\quad 2b=2\implies b=1 \text{(cohérent).}
$$
Donc :
$$
\dfrac{6x^3+2x^2+9x+2}{\sqrt{x^2+2}} = f'(x) \text{ pour } a=2,b=1,c=1.
$$
Ainsi :
$$
\int_{-1}^{4}\dfrac{6x^3+2x^2+9x+2}{\sqrt{x^2+2}}\,dx = f(4)-f(-1),
$$
où
$$
f(x) = (2x^2+x+1)\sqrt{x^2+2}.
$$
Calculons :
$$\begin{array}{rcl}
f(4) &=& (2(16)+4+1)\sqrt(16+2) \\&=& (32+4+1)\sqrt{18}\\&=&37(3\sqrt2)\\&=&111\sqrt2.\end{array}
$$
$$\begin{array}{rcl}
f(-1) &=& (2(1)-1+1)\sqrt(1+2) \\&=& (2)\sqrt3 \\&=& 2\sqrt3.\end{array}
$$
$$
\int_{-1}^{4}\dfrac{6x^3+2x^2+9x+2}{\sqrt{x^2+2}}\,dx = 111\sqrt2-2\sqrt3.
$$
Exercice 5
$$\begin{array}{rcl}
I&=&\int_{0}^{\pi/2}\dfrac{\cos x}{\cos x+\sin x}\,dx,\quad J\\&=&\int_{0}^{\pi/2}\dfrac{\sin x}{\cos x+\sin x}\,dx.\end{array}
$$
1) Calculer $I+J$ :
$$\begin{array}{rcl}
I+J&=&\int_{0}^{\pi/2}\dfrac{\cos x+\sin x}{\cos x+\sin x}\,dx\\&=&\int_{0}^{\pi/2}1\,dx\\&=&\dfrac{\pi}{2}.\end{array}
$$
2) Calculer $I-J$ :
$$
I-J=\int_{0}^{\pi/2}\dfrac{\cos x-\sin x}{\cos x+\sin x}\,dx.
$$
Observons que :
$(\cos x+\sin x)' = -\sin x+\cos x=\cos x-\sin x$.
Ainsi :
$$\begin{array}{rcl}
I-J&=&\int_{0}^{\pi/2}\dfrac{(\cos x+\sin x)'}{\cos x+\sin x}\,dx\\&=&\left[\ln|\cos x+\sin x|\right]_{0}^{\pi/2}.\end{array}
$$
$$\begin{array}{rcl}
\cos(\pi/2)+\sin(\pi/2)&=&1,\quad \cos(0)+\sin(0)\\&=&1 \implies I-J\\&=&\ln(1)-\ln(1)\\&=&0.\end{array}
$$
3) En déduire $I$ et $J$ :
$$
\begin{cases}
I+J=\dfrac{\pi}{2}\\
I-J=0
\end{cases}\implies I=J=\dfrac{\pi}{4}.
$$
Exercice 6 — Intégrales par linéarisation
L’idée de la linéarisation est d’utiliser les identités trigonométriques :
$\sin^2 x = \dfrac{1-\cos(2x)}{2}$,
$\cos^2 x = \dfrac{1+\cos(2x)}{2}$,
$\sin^4 x = (\sin^2 x)^2$, etc.
Produits en somme : $\cos A\cos B = \dfrac{\cos(A+B)+\cos(A-B)}{2}$, $\sin A\cos B = \dfrac{\sin(A+B)+\sin(A-B)}{2}$, etc.
1) $\int_{0}^{\pi/2}\sin^3 x\cos^2 x\,dx$
Écrivons $\sin^3 x\cos^2 x = \sin x\sin^2 x\cos^2 x = \sin x(1-\cos^2 x)\cos^2 x$ :
$$
=\sin x(\cos^2 x-\cos^4 x),\ \text{ posons } u=\cos x,\ du=-\sin x\,dx.
$$
$$
\int_{0}^{\pi/2}\sin x(\cos^2 x-\cos^4 x)\,dx = -\int_{1}^{0}(u^2 - u^4)\,du = \int_{0}^{1}(u^2 - u^4)\,du.
$$
$$
\int_{0}^{1}u^2\,du-\int_{0}^{1}u^4\,du = \dfrac{1}{3}-\dfrac{1}{5} = \dfrac{5-3}{15} = \dfrac{2}{15}.
$$
Réponse : $\dfrac{2}{15}$.
2) $\int_{0}^{\pi/4}\sin^4 x\,dx$
Utilisons $\sin^2 x = \dfrac{1-\cos 2x}{2}$ :
$$
\sin^4 x = (\sin^2 x)^2 = \left(\dfrac{1-\cos 2x}{2}\right)^2 = \dfrac{1-2\cos 2x+\cos^2 2x}{4}.
$$
Or $\cos^2 2x=\dfrac{1+\cos 4x}{2}$ :
$$
\sin^4 x = \dfrac{1-2\cos 2x+\dfrac12(1+\cos 4x)}{4} = \dfrac{\dfrac32-2\cos 2x+\dfrac12\cos 4x}{4}.
$$
Simplifions le coefficient :
$$
=\dfrac{3/2-2\cos 2x+(1/2)\cos 4x}{4} = \dfrac{3}{8}-\dfrac12\cos 2x+\dfrac18\cos 4x.
$$
Intégrons sur $[0,\pi/4]$ :
$$
\int_{0}^{\pi/4}\sin^4 x\,dx = \dfrac{3}{8}\dfrac{\pi}{4}-\dfrac12\dfrac{\sin 2x}{2}\Big|_{0}^{\pi/4}+\dfrac18\dfrac{\sin 4x}{4}\Big|_{0}^{\pi/4}
$$
$\sin 2x$ à $\pi/4 \to \sin(\pi/2)=1,\ \sin 2(0)=0,\ \sin 4x$ à $\pi/4 \to \sin(\pi)=0,\ \sin 0=0.$
Donc :
$$
=\dfrac{3\pi}{32}-\dfrac12\dfrac12(1-0)+0 = \dfrac{3\pi}{32}-\dfrac14.
$$
Réponse : $\dfrac{3\pi}{32}-\dfrac14$.
3) $\int_{0}^{\pi/2}\cos^3 t\,dt$
$\cos^3 t=\cos t(1-\sin^2 t)$, posons $u=\sin t,\ du=\cos t\,dt$ :
$$
\int_{0}^{\pi/2}\cos^3 t\,dt=\int_{0}^{1}(1-u^2)\,du = \left[u-\dfrac{u^3}{3}\right]_0^1=1-\dfrac13=\dfrac23.
$$
Réponse : $\dfrac{2}{3}$.
4) $\int_{0}^{\pi}\sin^2 u\cos^2 u\,du$
Utilisons $\sin^2 u\cos^2 u = (\sin u\cos u)^2 = \dfrac{\sin^2 2u}{4}=\dfrac{1-\cos 4u}{8}.$
$$
\int_{0}^{\pi}\sin^2 u\cos^2 u\,du=\int_{0}^{\pi}\dfrac{1-\cos 4u}{8}\,du = \dfrac18\left[u-\dfrac{\sin 4u}{4}\right]_0^\pi=\dfrac18(\pi-0)=\dfrac{\pi}{8}.
$$
Réponse : $\dfrac{\pi}{8}$.
5) $\int_{\pi/4}^{\pi/3}\cos x\cos 3x\cos 5x\,dx$
Produit en somme :
$$
\cos 3x\cos 5x=\dfrac{\cos(8x)+\cos(-2x)}{2}=\dfrac{\cos 8x+\cos 2x}{2}.
$$
Donc l’intégrande :
$$
\cos x \dfrac{\cos 8x+\cos 2x}{2}=\dfrac12(\cos x\cos 8x+\cos x\cos 2x).
$$
Encore produit en somme :
$$
\cos x\cos 8x=\dfrac{\cos 9x+\cos 7x}{2},\ \cos x\cos 2x=\dfrac{\cos 3x+\cos x}{2}.
$$
Tout ensemble :
$$
\text{intégrande} = \dfrac12\left(\dfrac{\cos 9x+\cos 7x}{2}+\dfrac{\cos 3x+\cos x}{2}\right) = \dfrac{\cos 9x+\cos 7x+\cos 3x+\cos x}{4}.
$$
On intègre :
$$
\int\cos kx\,dx=\dfrac{\sin kx}{k}.
$$
Donc :
$$
\int\mathrm{intégrande}\,dx = \dfrac14\left(\dfrac{\sin 9x}{9}+\dfrac{\sin 7x}{7}+\dfrac{\sin 3x}{3}+\sin x\right)\Big|_{\pi/4}^{\pi/3}.
$$
6) $\int_{0}^{\pi/3}\cos 2x\sin^3 x\,dx$
$\sin^3 x = \sin x(1-\cos^2 x).$
Ou utilisons une linéarisation :
$\sin^3 x=\dfrac{3\sin x-\sin 3x}{4}$ (identité standard). Ainsi :
$$
\int_{0}^{\pi/3}\cos 2x\sin^3 x\,dx=\dfrac14\int_{0}^{\pi/3}\left(3\sin x-\sin 3x\right)\cos 2x\,dx.
$$
Puis produit en somme :
$$
\sin x\cos 2x=\dfrac{\sin(3x)+\sin(-x)}{2}=\dfrac{\sin 3x-\sin x}{2},\quad \sin 3x\cos 2x=\dfrac{\sin 5x+\sin x}{2}.
$$
Exercice 7 — Intégrations par parties.
$$
\int u\,dv = uv - \int v\,du.
$$
1) $\int_{e}^{2e} x^{3}\ln x\,dx$
Choix :
$u = \ln x \implies du = \dfrac{1}{x}\,dx$,
$dv = x^3\,dx \implies v = \dfrac{x^4}{4}.$
$$\begin{array}{rcl}
\int_{e}^{2e} x^3\ln x\,dx &=& \left[\dfrac{x^4}{4}\ln x\right]_e^{2e} - \int_e^{2e}\dfrac{x^4}{4}\dfrac1{x}\,dx \\&=& \left[\dfrac{x^4\ln x}{4}\right]_e^{2e} - \dfrac14\int_e^{2e} x^3\,dx.\end{arra}
$$
Calculons :
$$\begin{array}{rcl}
\int_e^{2e} x^3\,dx &=& \dfrac{x^4}{4}\Big|_e^{2e} \\&=& \dfrac{(2e)^4 - e^4}{4} \\&=& \dfrac{16e^4 - e^4}{4} \\&=& \dfrac{15e^4}{4}.\end{array}
$$
Et :
$$\begin{array}{rcl}
\left[\dfrac{x^4\ln x}{4}\right]_e^{2e} &=& \dfrac{(2e)^4\ln(2e)-e^4\ln e}{4}\\&=&\dfrac{16e^4(\ln 2+1)-e^4}{4}\\&=&\dfrac{e^4(16(\ln2+1)-1)}4\\&=&\dfrac{e^4(16\ln2+15)}4.\end{arra}
$$
Alors :
$$\begin{array}{rcl}
\int_{e}^{2e} x^3\ln x\,dx &=& \dfrac{e^4(16\ln2+15)}4-\dfrac14\dfrac{15e^4}{4}\\&=&\dfrac{e^4(16\ln2+15)}4-\dfrac{15e^4}{16}\\&=&\dfrac{4e^4(16\ln2+15)-15e^4}{16}.
$$
$$\begin{array}{rcl}
&=&\dfrac{e^4(64\ln2+60-15)}{16}\\&=&\dfrac{e^4(64\ln2+45)}{16}.\end{array}
$$
Réponse :
$$
\boxed{\dfrac{e^4(64\ln2+45)}{16}.}
$$
2) $\int_{1}^{e} x^{2}\ln(x^{2})\,dx$
$\ln(x^2)=2\ln x$, donc :
$$
\int_{1}^{e}2x^2\ln x\,dx \text{ (cas identique au 1)}.
$$
IPP :
$\begin{array}{rcl}(u&=&\ln x,\ dv\\&=&2x^2\,dx \implies v\\&=&\dfrac23 x^3,\ du\\&=&\dfrac1{x}\,dx)\end{array}$
$$\begin{array}{rcl}
\int_{1}^{e}2x^2\ln x\,dx &=& \left[\dfrac23 x^3\ln x\right]_1^e - \int_1^e\dfrac23 x^3\dfrac1{x}\,dx \\&=& \dfrac23 e^3\ln e -\dfrac23\int_1^e x^2\,dx.\end{array}
$$
$$\begin{array}{rcl}
&=&\dfrac23 e^3-\dfrac23\dfrac{x^3}{3}\Big|_1^e\\&=&\dfrac23 e^3-\dfrac23\dfrac{e^3-1}{3}\\&=&\dfrac23 e^3-\dfrac29(e^3-1)\\&=&\dfrac23 e^3-\dfrac29 e^3+\dfrac29.\end{array}
$$
$$\begin{array}{rcl}
&=&\dfrac{6}{9}e^3-\dfrac29 e^3+\dfrac29\\&=&\dfrac49 e^3+\dfrac29\\&=&\dfrac{2}{9}(2e^3+1).\end{array}
$$
Comme $\ln(x^2)=2\ln x$, il faut multiplier ce résultat par 2 :
$$\begin{array}{rcl}
\int_{1}^{e} x^{2}\ln(x^{2})\,dx &=& 2\times \dfrac{2}{9}(2e^3+1)\\&=&\dfrac{4}{9}(2e^3+1).\end{array}$$
Réponse :
$$
\boxed{\dfrac{4}{9}(2e^3+1).}
$$
3) $\int_{e}^{2e} x(\ln x)^2\,dx$
IPP :
$\begin{array}{rcl}u&=&(\ln x)^2,\ dv'\\&=&x\,dx \implies v\\&=&\dfrac{x^2}{2},\ du\\&=&\dfrac{2\ln x}{x}\,dx\end{array}$.
$$
\int_{e}^{2e} x(\ln x)^2\,dx=\left[\dfrac{x^2(\ln x)^2}{2}\right]_e^{2e}-\int_e^{2e}\dfrac{x^2}{2}\dfrac{2\ln x}{x}\,dx
=\left[\dfrac{x^2(\ln x)^2}{2}\right]_e^{2e}-\int_e^{2e} x\ln x\,dx.
$$
On doit maintenant calculer $\int_e^{2e} x\ln x\,dx$, encore par IPP :
$\begin{array}{rcl}u&=&\ln x,\ dv\\&=&x\,dx\implies v\\&=&\dfrac{x^2}{2},du\\&=&\dfrac1{x}\,dx\end{array}$,
$$
\int_e^{2e} x\ln x\,dx=\left[\dfrac{x^2}{2}\ln x\right]_e^{2e}-\int_e^{2e}\dfrac{x^2}{2}\dfrac1{x}\,dx=\left[\dfrac{x^2}{2}\ln x\right]_e^{2e}-\dfrac12\int_e^{2e} x\,dx.
$$
$\begin{array}{rcl}\int_e^{2e} x\,dx&=&\dfrac{x^2}{2}\Big|_e^{2e}\\&=&\dfrac{(2e)^2-e^2}{2}\\&=&\dfrac{4e^2-e^2}{2}\\&=&\dfrac{3e^2}{2}.\end{array}$
$\left[\dfrac{x^2}{2}\ln x\right]_e^{2e}=\dfrac{(2e)^2}{2}\ln(2e)-\dfrac{e^2}{2}\ln e=2e^2(\ln 2+1)-\dfrac12 e^2.$
$$
\int_e^{2e} x\ln x\,dx=2e^2(\ln 2+1)-\dfrac12 e^2-\dfrac12\dfrac{3e^2}{2}=2e^2(\ln 2+1)-\dfrac12e^2-\dfrac{3e^2}{4}.
$$
$$
=2e^2(\ln 2+1)-\dfrac{2e^2}{4}-\dfrac{3e^2}{4}=2e^2(\ln 2+1)-\dfrac{5e^2}{4}.
$$
$$
=2e^2(\ln 2+1)-1.25 e^2=e^2(2\ln 2+2-1.25)=e^2(2\ln 2+0.75)=e^2\left(2\ln 2+\dfrac34\right).
$$
Retour à la première :
$$
\int_e^{2e} x(\ln x)^2\,dx=\left[\dfrac{x^2(\ln x)^2}{2}\right]_e^{2e}-e^2\left(2\ln 2+\dfrac34\right).
$$
$\left[\dfrac{x^2(\ln x)^2}{2}\right]_e^{2e}=\dfrac{(2e)^2(\ln(2e))^2}{2}-\dfrac{e^2(\ln e)^2}{2}=2e^2(\ln(2e))^2-\dfrac12 e^2,\ \ln(2e)=\ln2+1.$
$(\ln2+1)^2=\ln^22+2\ln2+1,$ donc :
$$
2e^2(\ln(2e))^2-\dfrac12 e^2=2e^2(\ln^22+2\ln2+1)-\dfrac12e^2.
$$
$$
=2e^2\ln^22+4e^2\ln2+2e^2-\dfrac12e^2 =2e^2\ln^22+4e^2\ln2+\dfrac32 e^2.
$$
Soustraction :
$$
\int_e^{2e} x(\ln x)^2\,dx=2e^2\ln^22+4e^2\ln2+\dfrac32 e^2 - e^2(2\ln2+\dfrac34) =2e^2\ln^22+2e^2\ln2+\dfrac32 e^2-\dfrac34 e^2=2e^2\ln^22+2e^2\ln2+\dfrac34 e^2.
$$
Réponse :
$$
\boxed{\int_e^{2e} x(\ln x)^2\,dx=2e^2(\ln 2)^2+2e^2\ln 2+\dfrac34 e^2.}
$$
Exercice 8
1) \(\int_{1}^{a} x^{2} \ln x^{2} \mathrm{d}x\), \(a > 0\)
\[
\ln x^2 = 2 \ln x, \quad \text{donc} \quad \int_{1}^{a} x^{2} \ln x^{2} \mathrm{d}x = 2 \int_{1}^{a} x^{2} \ln x \mathrm{d}x.
\]
Par intégration par parties, avec \(u = \ln x\), \(\mathrm{d}v = x^2 \mathrm{d}x\), donc \(\mathrm{d}u = \frac{1}{x} \mathrm{d}x\), \(v = \frac{x^3}{3}\):
\[
\int x^2 \ln x \mathrm{d}x = \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \cdot \frac{1}{x} \mathrm{d}x = \frac{x^3}{3} \ln x - \frac{1}{3} \int x^2 \mathrm{d}x = \frac{x^3}{3} \ln x - \frac{x^3}{9} + C.
\]
Ainsi,
\[\begin{array}{rcl}
2 \int_{1}^{a} x^{2} \ln x \mathrm{d}x &=& 2 \left[ \frac{x^3}{3} \ln x - \frac{x^3}{9} \right]_{1}^{a} \\&=& 2 \left( \left( \frac{a^3}{3} \ln a - \frac{a^3}{9} \right) - \left( \frac{1}{3} \ln 1 - \frac{1}{9} \right) \right) \\&=& 2 \left( \frac{a^3 \ln a}{3} - \frac{a^3}{9} + \frac{1}{9} \right) \\&=& \frac{2a^3 \ln a}{3} - \frac{2a^3}{9} + \frac{2}{9} \\&=& \frac{2}{9} (3a^3 \ln a - a^3 + 1).\end{array}
\]
\[
\boxed{\dfrac{2}{9}\left(3a^{3}\ln a - a^{3} + 1\right)}
\]
2) \(\int_{0}^{t} (3x^{2} + x + 1) \cos x \mathrm{d}x\)
Par intégration par parties, avec \(u = 3x^2 + x + 1\), \(\mathrm{d}v = \cos x \mathrm{d}x\), donc \(\mathrm{d}u = (6x + 1) \mathrm{d}x\), \(v = \sin x\):
\[
\int (3x^2 + x + 1) \cos x \mathrm{d}x = (3x^2 + x + 1) \sin x - \int (6x + 1) \sin x \mathrm{d}x.
\]
Pour \(\int (6x + 1) \sin x \mathrm{d}x\), avec \(u_1 = 6x + 1\), \(\mathrm{d}v_1 = \sin x \mathrm{d}x\), donc \(\mathrm{d}u_1 = 6 \mathrm{d}x\), \(v_1 = -\cos x\):
\[\begin{array}{rcl}
\int (6x + 1) \sin x \mathrm{d}x &=& -(6x + 1) \cos x - \int (-\cos x) \cdot 6 \mathrm{d}x \\&=& -(6x + 1) \cos x + 6 \int \cos x \mathrm{d}x \\&=& -(6x + 1) \cos x + 6 \sin x + C.\end{array}
\]
Ainsi,
\[
\int (3x^2 + x + 1) \cos x \mathrm{d}x = (3x^2 + x + 1) \sin x + (6x + 1) \cos x - 6 \sin x + C = (3x^2 + x - 5) \sin x + (6x + 1) \cos x + C.
\]
Évaluation de 0 à \(t\):
\[
\left[ (3x^2 + x - 5) \sin x + (6x + 1) \cos x \right]_{0}^{t} = \left( (3t^2 + t - 5) \sin t + (6t + 1) \cos t \right) - \left( (0 + 0 - 5) \cdot 0 + (0 + 1) \cdot 1 \right) = (3t^2 + t - 5) \sin t + (6t + 1) \cos t - 1.
\]
\[
\boxed{\left(3t^{2} + t - 5\right)\sin t + \left(6t + 1\right)\cos t - 1}
\]
3) \(\int_{1}^{t} \dfrac{x \ln x}{(1 + x^{2})^{2}} \mathrm{d}x\)
Par intégration par parties, avec \(u = \ln x\), \(\mathrm{d}v = \dfrac{x}{(1 + x^2)^2} \mathrm{d}x\), donc \(\mathrm{d}u = \dfrac{1}{x} \mathrm{d}x\), \(v = -\dfrac{1}{2} \dfrac{1}{1 + x^2}\):
\[
\int \frac{x \ln x}{(1 + x^2)^2} \mathrm{d}x = -\frac{\ln x}{2(1 + x^2)} - \int \left( -\frac{1}{2} \frac{1}{1 + x^2} \right) \frac{1}{x} \mathrm{d}x = -\frac{\ln x}{2(1 + x^2)} + \frac{1}{2} \int \frac{1}{x(1 + x^2)} \mathrm{d}x.
\]
Avec décomposition en éléments simples: \(\dfrac{1}{x(1 + x^2)} = \dfrac{1}{x} - \dfrac{x}{1 + x^2}\), donc
\[
\int \frac{1}{x(1 + x^2)} \mathrm{d}x = \int \left( \frac{1}{x} - \frac{x}{1 + x^2} \right) \mathrm{d}x = \ln |x| - \frac{1}{2} \ln (1 + x^2) + C = \ln \left| \frac{x}{\sqrt{1 + x^2}} \right| + C.
\]
Puisque \(x > 0\) sur \([1, t]\),
\[
\int \frac{x \ln x}{(1 + x^2)^2} \mathrm{d}x = -\frac{\ln x}{2(1 + x^2)} + \frac{1}{2} \left( \ln x - \frac{1}{2} \ln (1 + x^2) \right) + C = -\frac{\ln x}{2(1 + x^2)} + \frac{1}{2} \ln x - \frac{1}{4} \ln (1 + x^2) + C.
\]
Évaluation de 1 à \(t\):
\[
\left[ -\frac{\ln x}{2(1 + x^2)} + \frac{1}{2} \ln x - \frac{1}{4} \ln (1 + x^2) \right]_{1}^{t} = \left( -\frac{\ln t}{2(1 + t^2)} + \frac{1}{2} \ln t - \frac{1}{4} \ln (1 + t^2) \right) - \left( 0 + 0 - \frac{1}{4} \ln 2 \right) = -\frac{\ln t}{2(1 + t^2)} + \frac{1}{2} \ln t - \frac{1}{4} \ln (1 + t^2) + \frac{1}{4} \ln 2.
\]
\[
\boxed{-\dfrac{\ln t}{2\left(1 + t^{2}\right)} + \dfrac{1}{2}\ln t - \dfrac{1}{4}\ln\left(1 + t^{2}\right) + \dfrac{1}{4}\ln 2}
\]
4) \(\int_{0}^{\frac{\pi}{2}} x^{2} \sin x \mathrm{d}x\)
Par intégration par parties, avec \(u = x^2\), \(\mathrm{d}v = \sin x \mathrm{d}x\), donc \(\mathrm{d}u = 2x \mathrm{d}x\), \(v = -\cos x\):
\[
\int x^2 \sin x \mathrm{d}x = -x^2 \cos x - \int (-\cos x) \cdot 2x \mathrm{d}x = -x^2 \cos x + 2 \int x \cos x \mathrm{d}x.
\]
Pour \(\int x \cos x \mathrm{d}x\), avec \(u_1 = x\), \(\mathrm{d}v_1 = \cos x \mathrm{d}x\), donc \(\mathrm{d}u_1 = \mathrm{d}x\), \(v_1 = \sin x\):
\[
\int x \cos x \mathrm{d}x = x \sin x - \int \sin x \mathrm{d}x = x \sin x + \cos x + C.
\]
Ainsi,
\[
\int x^2 \sin x \mathrm{d}x = -x^2 \cos x + 2(x \sin x + \cos x) + C = -x^2 \cos x + 2x \sin x + 2 \cos x + C.
\]
Évaluation de 0 à \(\pi/2\):
\[
\left[ -x^2 \cos x + 2x \sin x + 2 \cos x \right]_{0}^{\pi/2} = \left( -(\pi/2)^2 \cdot 0 + 2(\pi/2) \cdot 1 + 2 \cdot 0 \right) - \left( 0 + 0 + 2 \cdot 1 \right) = \pi - 2.
\]
\[
\boxed{\pi - 2}
\]
5) \(\int_{1}^{x} t^{n} \ln t \mathrm{d}t\), \(x > 0\), \(n \in \mathbb{N} \setminus \{-1\}\)
Par intégration par parties, avec \(u = \ln t\), \(\mathrm{d}v = t^n \mathrm{d}t\), donc \(\mathrm{d}u = \dfrac{1}{t} \mathrm{d}t\), \(v = \dfrac{t^{n+1}}{n+1}\):
\[\begin{array}{rcl}
\int t^n \ln t \mathrm{d}t &=& \frac{t^{n+1}}{n+1} \ln t - \int \frac{t^{n+1}}{n+1} \cdot \frac{1}{t} \mathrm{d}t \\&=& \frac{t^{n+1}}{n+1} \ln t - \frac{1}{n+1} \int t^n \mathrm{d}t \\&=& \frac{t^{n+1}}{n+1} \ln t - \frac{t^{n+1}}{(n+1)^2} + C.
\]
Évaluation de 1 à \(x\):
\[
\left[ \frac{t^{n+1}}{n+1} \ln t - \frac{t^{n+1}}{(n+1)^2} \right]_{1}^{x} = \left( \frac{x^{n+1}}{n+1} \ln x - \frac{x^{n+1}}{(n+1)^2} \right) - \left( 0 - \frac{1}{(n+1)^2} \right) = \frac{x^{n+1}}{n+1} \ln x - \frac{x^{n+1}}{(n+1)^2} + \frac{1}{(n+1)^2}.
\]
\[
\boxed{\dfrac{x^{n+1}}{n+1}\left(\ln x - \dfrac{1}{n+1}\right) + \dfrac{1}{\left(n+1\right)^{2}}}
\]
6) \(\int_{1}^{1} (x^{2} + x + 1) \sin 2x \mathrm{d}x\)
Les bornes d'intégration sont identiques, donc l'intégrale est nulle.
\[
\boxed{0}
\]
7) \(\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (x^{2} + 1) \cos^{2} x \mathrm{d}x\)
Avec \(\cos^2 x = \dfrac{1 + \cos 2x}{2}\):
\[
\int (x^2 + 1) \cos^2 x \mathrm{d}x = \int (x^2 + 1) \frac{1 + \cos 2x}{2} \mathrm{d}x = \frac{1}{2} \int (x^2 + 1 + x^2 \cos 2x + \cos 2x) \mathrm{d}x.
\]
Les intégrales sont:
- \(\int x^2 \mathrm{d}x = \frac{x^3}{3}\),
- \(\int 1 \mathrm{d}x = x\),
- \(\int \cos 2x \mathrm{d}x = \frac{1}{2} \sin 2x\),
- \(\int x^2 \cos 2x \mathrm{d}x\) par parties: avec \(u = x^2\), \(\mathrm{d}v = \cos 2x \mathrm{d}x\), donc \(\mathrm{d}u = 2x \mathrm{d}x\), \(v = \frac{1}{2} \sin 2x\):
\[
\int x^2 \cos 2x \mathrm{d}x = \frac{x^2}{2} \sin 2x - \int \frac{1}{2} \sin 2x \cdot 2x \mathrm{d}x = \frac{x^2}{2} \sin 2x - \int x \sin 2x \mathrm{d}x.
\]
Pour \(\int x \sin 2x \mathrm{d}x\), avec \(u_1 = x\), \(\mathrm{d}v_1 = \sin 2x \mathrm{d}x\), donc \(\mathrm{d}u_1 = \mathrm{d}x\), \(v_1 = -\frac{1}{2} \cos 2x\):
\[
\int x \sin 2x \mathrm{d}x = -\frac{x}{2} \cos 2x - \int \left( -\frac{1}{2} \cos 2x \right) \mathrm{d}x = -\frac{x}{2} \cos 2x + \frac{1}{2} \int \cos 2x \mathrm{d}x = -\frac{x}{2} \cos 2x + \frac{1}{4} \sin 2x + C.
\]
Ainsi,
\[
\int x^2 \cos 2x \mathrm{d}x = \frac{x^2}{2} \sin 2x + \frac{x}{2} \cos 2x - \frac{1}{4} \sin 2x + C.
\]
la primitive complète est:
\[
F(x) = \frac{x^3}{3} + x + \frac{x^2}{2} \sin 2x + \frac{x}{2} \cos 2x + \frac{1}{4} \sin 2x.
\]
L'intégrale est \(\dfrac{1}{2} [F(x)]_{\pi/4}^{\pi/2}\):
- En \(\pi/2\): \(\dfrac{(\pi/2)^3}{3} + \dfrac{\pi}{2} + \dfrac{(\pi/2)^2}{2} \cdot 0 + \dfrac{\pi/2}{2} \cdot (-1) + \dfrac{1}{4} \cdot 0 = \dfrac{\pi^3}{24} + \dfrac{\pi}{4}\),
- En \(\pi/4\): \(\dfrac{(\pi/4)^3}{3} + \dfrac{\pi}{4} + \dfrac{(\pi/4)^2}{2} \cdot 1 + \dfrac{\pi/4}{2} \cdot 0 + \dfrac{1}{4} \cdot 1 = \dfrac{\pi^3}{192} + \dfrac{\pi}{4} + \dfrac{\pi^2}{32} + \dfrac{1}{4}\),
- Différence: \(\dfrac{\pi^3}{24} + \dfrac{\pi}{4} - \left( \dfrac{\pi^3}{192} + \dfrac{\pi}{4} + \dfrac{\pi^2}{32} + \dfrac{1}{4} \right) = \dfrac{7\pi^3}{192} - \dfrac{\pi^2}{32} - \dfrac{1}{4}\),
- Multiplié par \(\dfrac{1}{2}\): \(\dfrac{7\pi^3}{384} - \dfrac{\pi^2}{64} - \dfrac{1}{8}\).
\[
\boxed{\dfrac{7\pi^{3}}{384} - \dfrac{\pi^{2}}{64} - \dfrac{1}{8}}
\]
8) \(\int_{-1}^{1} (1 + x)^{2} \mathrm{e}^{-x} \mathrm{d}x\)
Avec \((1 + x)^2 = 1 + 2x + x^2\):
\[
\int (1 + 2x + x^2) \mathrm{e}^{-x} \mathrm{d}x.
\]
Par parties, avec \(u = 1 + 2x + x^2\), \(\mathrm{d}v = \mathrm{e}^{-x} \mathrm{d}x\), donc \(\mathrm{d}u = (2 + 2x) \mathrm{d}x\), \(v = -\mathrm{e}^{-x}\):
\[
\int (1 + 2x + x^2) \mathrm{e}^{-x} \mathrm{d}x = -(1 + 2x + x^2) \mathrm{e}^{-x} + \int (2 + 2x) \mathrm{e}^{-x} \mathrm{d}x.
\]
Pour \(\int (2 + 2x) \mathrm{e}^{-x} \mathrm{d}x\), avec \(u_1 = 2 + 2x\), \(\mathrm{d}v_1 = \mathrm{e}^{-x} \mathrm{d}x\), donc \(\mathrm{d}u_1 = 2 \mathrm{d}x\), \(v_1 = -\mathrm{e}^{-x}\):
\[
\int (2 + 2x) \mathrm{e}^{-x} \mathrm{d}x = -2(1 + x) \mathrm{e}^{-x} + 2 \int \mathrm{e}^{-x} \mathrm{d}x = -2(1 + x) \mathrm{e}^{-x} - 2 \mathrm{e}^{-x} + C = -2\mathrm{e}^{-x} (x + 2) + C.
\]
Ainsi,
\[
\int (1 + 2x + x^2) \mathrm{e}^{-x} \mathrm{d}x = -(1 + 2x + x^2) \mathrm{e}^{-x} - 2(x + 2) \mathrm{e}^{-x} + C = \mathrm{e}^{-x} (-x^2 - 4x - 5) + C.
\]
Évaluation de \(-1\) à \(1\):
- En \(1\): \(\mathrm{e}^{-1} (-1 - 4 - 5) = -10/\mathrm{e}\),
- En \(-1\): \(\mathrm{e}^{1} (-1 + 4 - 5) = -2\mathrm{e}\),
- Différence: \(-10/\mathrm{e} - (-2\mathrm{e}) = 2\mathrm{e} - 10/\mathrm{e}\).
\[
\boxed{2\mathrm{e} - \dfrac{10}{\mathrm{e}}}
\]
9) \(\int_{0}^{\frac{\pi}{3}} \dfrac{t \sin t}{\cos^{3} t} \mathrm{d}t\)
Par intégration par parties, avec \(u = t\), \(\mathrm{d}v = \dfrac{\sin t}{\cos^3 t} \mathrm{d}t\), donc \(\mathrm{d}u = \mathrm{d}t\), \(v = \dfrac{1}{2} \sec^2 t\) (car \(\int \dfrac{\sin t}{\cos^3 t} \mathrm{d}t = \dfrac{1}{2} \sec^2 t\)):
\[
\int \frac{t \sin t}{\cos^3 t} \mathrm{d}t = \frac{t}{2} \sec^2 t - \int \frac{1}{2} \sec^2 t \mathrm{d}t = \frac{t}{2} \sec^2 t - \frac{1}{2} \tan t + C.
\]
Évaluation de 0 à \(\pi/3\):
- En \(\pi/3\): \(\dfrac{\pi/3}{2} \cdot 4 - \dfrac{1}{2} \cdot \sqrt{3} = \dfrac{2\pi}{3} - \dfrac{\sqrt{3}}{2}\),
- En 0: 0,
- Différence: \(\dfrac{2\pi}{3} - \dfrac{\sqrt{3}}{2}\).
\[
\boxed{\dfrac{2\pi}{3} - \dfrac{\sqrt{3}}{2}}
\]
10) \(\int_{1}^{\lambda} \ln(x + \sqrt{x^{2} - 1}) \mathrm{d}x\), \(\lambda > 1\)
L'intégrande est \(\cosh^{-1} x\). Par parties, avec \(u = \cosh^{-1} x\), \(\mathrm{d}v = \mathrm{d}x\), donc \(\mathrm{d}u = \dfrac{1}{\sqrt{x^2 - 1}} \mathrm{d}x\), \(v = x\):
\[
\int \cosh^{-1} x \mathrm{d}x = x \cosh^{-1} x - \int \frac{x}{\sqrt{x^2 - 1}} \mathrm{d}x.
\]
Avec \(w = x^2 - 1\), \(\mathrm{d}w = 2x \mathrm{d}x\), donc \(\int \dfrac{x}{\sqrt{x^2 - 1}} \mathrm{d}x = \sqrt{x^2 - 1} + C\). Ainsi,
\[
\int \cosh^{-1} x \mathrm{d}x = x \cosh^{-1} x - \sqrt{x^2 - 1} + C.
\]
Évaluation de 1 à \(\lambda\):
- En \(\lambda\): \(\lambda \ln(\lambda + \sqrt{\lambda^2 - 1}) - \sqrt{\lambda^2 - 1}\),
- En 1: \(1 \cdot \ln(1 + 0) - 0 = 0\),
- Différence: \(\lambda \ln(\lambda + \sqrt{\lambda^2 - 1}) - \sqrt{\lambda^2 - 1}\).
\[
\boxed{\lambda\ln\left(\lambda + \sqrt{\lambda^{2} - 1\right) - \sqrt{\lambda^{2} - 1}}
\]
11) \(\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cos x \ln(\cos x + 1) \mathrm{d}x\)
Par intégration par parties, avec \(u = \ln(\cos x + 1)\), \(\mathrm{d}v = \cos x \mathrm{d}x\), donc \(\mathrm{d}u = -\dfrac{\sin x}{\cos x + 1} \mathrm{d}x\), \(v = \sin x\):
\[
\int \cos x \ln(\cos x + 1) \mathrm{d}x = \sin x \ln(\cos x + 1) - \int \sin x \cdot \left( -\frac{\sin x}{\cos x + 1} \right) \mathrm{d}x = \sin x \ln(\cos x + 1) + \int \frac{\sin^2 x}{\cos x + 1} \mathrm{d}x.
\]
Avec \(\dfrac{\sin^2 x}{\cos x + 1} = 1 - \cos x\), donc \(\int \dfrac{\sin^2 x}{\cos x + 1} \mathrm{d}x = \int (1 - \cos x) \mathrm{d}x = x - \sin x + C\). Ainsi,
\[
\int \cos x \ln(\cos x + 1) \mathrm{d}x = \sin x \ln(\cos x + 1) + x - \sin x + C.
\]
Évaluation de \(\pi/4\) à \(\pi/3\):
- En \(\pi/3\): \(\dfrac{\sqrt{3}}{2} \ln\left(\dfrac{3}{2}\right) + \dfrac{\pi}{3} - \dfrac{\sqrt{3}}{2}\),
- En \(\pi/4\): \(\dfrac{\sqrt{2}}{2} \ln\left(\dfrac{2 + \sqrt{2}}{2}\right) + \dfrac{\pi}{4} - \dfrac{\sqrt{2}}{2} = \dfrac{\sqrt{2}}{2} \ln(2 + \sqrt{2}) + \dfrac{\pi}{4} - \dfrac{\sqrt{2}}{2} - \dfrac{\sqrt{2}}{2} \ln 2\) (car \(\ln\left(\dfrac{2 + \sqrt{2}}{2}\right) = \ln(2 + \sqrt{2}) - \ln 2\)),
- Différence: \(\dfrac{\pi}{12} + \dfrac{\sqrt{3}}{2} \ln \dfrac{3}{2} + \dfrac{\sqrt{2}}{2} \ln (2 - \sqrt{2}) + \dfrac{\sqrt{2} - \sqrt{3}}{2}\) (après simplification).
\[
\boxed{\dfrac{\pi}{12} + \dfrac{\sqrt{3}}{2}\ln\left(\dfrac{3}{2}\right) + \dfrac{\sqrt{2}}{2}\ln\left(2 - \sqrt{2}\right) + \dfrac{\sqrt{2} - \sqrt{3}}{2}}
\]
12) \(\int_{0}^{2} x^{2} \mathrm{e}^{|x-1|} \mathrm{d}x\)
Séparation en \(x = 1\):
\[
\int_{0}^{1} x^{2} \mathrm{e}^{1 - x} \mathrm{d}x + \int_{1}^{2} x^{2} \mathrm{e}^{x - 1} \mathrm{d}x.
\]
- Première intégrale: par parties, \(u = x^2\), \(\mathrm{d}v = \mathrm{e}^{1 - x} \mathrm{d}x\), \(v = -\mathrm{e}^{1 - x}\):
\[
\int_{0}^{1} x^{2} \mathrm{e}^{1 - x} \mathrm{d}x = \left[ -x^2 \mathrm{e}^{1 - x} \right]_{0}^{1} + 2 \int_{0}^{1} x \mathrm{e}^{1 - x} \mathrm{d}x = (-1) + 2 \left[ -\mathrm{e}^{1 - x} (x + 1) \right]_{0}^{1} = -1 + 2(-2 + \mathrm{e}) = 2\mathrm{e} - 5.
\]
- Deuxième intégrale: par parties, \(u = x^2\), \(\mathrm{d}v = \mathrm{e}^{x - 1} \mathrm{d}x\), \(v = \mathrm{e}^{x - 1}\):
\[
\int_{1}^{2} x^{2} \mathrm{e}^{x - 1} \mathrm{d}x = \left[ x^2 \mathrm{e}^{x - 1} \right]_{1}^{2} - 2 \int_{1}^{2} x \mathrm{e}^{x - 1} \mathrm{d}x = (4\mathrm{e} - 1) - 2 \left[ \mathrm{e}^{x - 1} (x - 1) \right]_{1}^{2} = 4\mathrm{e} - 1 - 2\mathrm{e} = 2\mathrm{e} - 1.
\]
Somme: \((2\mathrm{e} - 5) + (2\mathrm{e} - 1) = 4\mathrm{e} - 6\).
\[
\boxed{4\mathrm{e} - 6}
\]
13) \(\int_{0}^{\frac{\pi}{3}} \mathrm{e}^{-x} \sin^{2} x (1 + \cos^{2} x) \mathrm{d}x\)
Avec \(\sin^2 x (1 + \cos^2 x) = \dfrac{5 - 4 \cos 2x - \cos 4x}{8}\):
\[
\int \mathrm{e}^{-x} \cdot \frac{5 - 4 \cos 2x - \cos 4x}{8} \mathrm{d}x = \frac{1}{8} \int \mathrm{e}^{-x} (5 - 4 \cos 2x - \cos 4x) \mathrm{d}x.
\]
Primitive:
- \(\int \mathrm{e}^{-x} \mathrm{d}x = -\mathrm{e}^{-x}\),
- \(\int \mathrm{e}^{-x} \cos 2x \mathrm{d}x = \dfrac{\mathrm{e}^{-x}}{5} (2 \sin 2x - \cos 2x)\),
- \(\int \mathrm{e}^{-x} \cos 4x \mathrm{d}x = \dfrac{\mathrm{e}^{-x}}{17} (4 \sin 4x - \cos 4x)\).
Ainsi, la primitive est:
\[
\frac{1}{8} \mathrm{e}^{-x} \left[ -5 - \frac{4}{5} (2 \sin 2x - \cos 2x) - \frac{1}{17} (4 \sin 4x - \cos 4x) \right].
\]
Évaluation de 0 à \(\pi/3\):
- En \(\pi/3\): \(\mathrm{e}^{-\pi/3} \left( -\dfrac{923}{170} - \dfrac{58\sqrt{3}}{85} \right)\),
- En 0: \(-\dfrac{352}{85}\),
- Différence: \(\dfrac{1}{1360} \left( 704 - \mathrm{e}^{-\pi/3} (923 + 116\sqrt{3}) \right)\).
\[ \boxed{\dfrac{1}{1360}\left(704 - \mathrm{e}^{-\pi/3}\left(923 + 116\sqrt{3}\right)\right)}\]
Exercice 9
1) Montrer que \(I_n = \lambda (\ln \lambda)^{n} - n I_{n-1}\)
Par intégration par parties, avec \(u = (\ln x)^n\), \(\mathrm{d}v = \mathrm{d}x\), donc \(\mathrm{d}u = n (\ln x)^{n-1} \frac{1}{x} \mathrm{d}x\), \(v = x\):
\[
\int (\ln x)^n \mathrm{d}x = x (\ln x)^n - \int x \cdot n (\ln x)^{n-1} \frac{1}{x} \mathrm{d}x = x (\ln x)^n - n \int (\ln x)^{n-1} \mathrm{d}x.
\]
Évaluation de 1 à \(\lambda\):
\[
\left[ x (\ln x)^n \right]_{1}^{\lambda} - n \int_{1}^{\lambda} (\ln x)^{n-1} \mathrm{d}x = \lambda (\ln \lambda)^n - 1 \cdot (\ln 1)^n - n I_{n-1} = \lambda (\ln \lambda)^n - n I_{n-1},
\]
car \(\ln 1 = 0\) et \(0^n = 0\) pour \(n \geq 1\).
\[
\boxed{I_n = \lambda \left(\ln \lambda\right)^{n} - n I_{n-1}}
\]
2) Montrer que \(I_n = \lambda \left[ (\ln \lambda)^{n} - n (\ln \lambda)^{n-1} + n(n-1) (\ln \lambda)^{n-2} + \cdots + (-1)^{n} n! \right] - (-1)^{n} n!\)
Par récurrence à partir de la relation de récurrence, ou par itération:
\[
I_n = \lambda (\ln \lambda)^n - n I_{n-1} = \lambda (\ln \lambda)^n - n \left[ \lambda (\ln \lambda)^{n-1} - (n-1) I_{n-2} \right] = \cdots
\]
Après \(n\) itérations:
\[
I_n = \sum_{j=0}^{n-1} (-1)^j \frac{n!}{(n-j)!} \lambda (\ln \lambda)^{n-j} + (-1)^n n! I_0,
\]
avec \(I_0 = \lambda - 1\). Ainsi,
\[
I_n = \lambda \sum_{j=0}^{n} (-1)^j \frac{n!}{(n-j)!} (\ln \lambda)^{n-j} - (-1)^n n!.
\]
L'expression est équivalente à:
\[
I_n = \lambda \left[ (\ln \lambda)^n - n (\ln \lambda)^{n-1} + n(n-1) (\ln \lambda)^{n-2} - \cdots + (-1)^n n! \right] - (-1)^n n!.
\]
\[
\boxed{I_n = \lambda \left[ \left(\ln \lambda\right)^{n} - n \left(\ln \lambda\right)^{n-1} + n(n-1) \left(\ln \lambda\right)^{n-2} + \cdots + (-1)^{n} n! \right] - (-1)^{n} n!}
\]
3) Calculer \(I_0, I_1, I_2, I_3\)
- \(I_0 = \int_{1}^{\lambda} (\ln x)^0 \mathrm{d}x = \int_{1}^{\lambda} 1 \mathrm{d}x = \lambda - 1\),
- \(I_1 = \lambda \ln \lambda - 1 \cdot I_0 = \lambda \ln \lambda - (\lambda - 1) = \lambda \ln \lambda - \lambda + 1\),
- \(I_2 = \lambda (\ln \lambda)^2 - 2 I_1 = \lambda (\ln \lambda)^2 - 2(\lambda \ln \lambda - \lambda + 1) = \lambda (\ln \lambda)^2 - 2\lambda
\ln \lambda + 2\lambda - 2\),
- \(I_3 = \lambda (\ln \lambda)^3 - 3 I_2 = \lambda (\ln \lambda)^3 - 3(\lambda (\ln \lambda)^2 - 2\lambda \ln \lambda + 2\lambda - 2) = \lambda (\ln \lambda)^3 - 3\lambda (\ln \lambda)^2 + 6\lambda \ln \lambda - 6\lambda + 6\).
\[
\boxed{I_{0} = \lambda - 1}
\]
\[
\boxed{I_{1} = \lambda\ln\lambda - \lambda + 1}
\]
\[
\boxed{I_{2} = \lambda\left(\ln\lambda\right)^{2} - 2\lambda\ln\lambda + 2\lambda - 2}
\]
\[
\boxed{I_{3} = \lambda\left(\ln\lambda\right)^{3} - 3\lambda\left(\ln\lambda\right)^{2} + 6\lambda\ln\lambda - 6\lambda + 6}
\]
Ajouter un commentaire