Dans le plan complexe, on donne le point $B$ d'affixe $\mathrm{i}.$
$z'=\left(\dfrac{1}{2}-\mathrm{i}\dfrac{\sqrt{3}}{2}\right)z-\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\mathrm{i}$
$z'=\left(\dfrac{1}{2}-\mathrm{i}\dfrac{\sqrt{3}}{2}\right)z+\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\mathrm{i}$
$z'=\left(-\dfrac{1}{2}+\mathrm{i}\dfrac{\sqrt{3}}{2}\right)z-\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\mathrm{i}$
$z'=\left(\dfrac{1}{2}-\mathrm{i}\dfrac{\sqrt{3}}{2}\right)z-\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\mathrm{i}$