Physique

Corrigé Exercice 1 : Les lentilles minces 3e

Classe: 
Troisième
 

Exercice 1

1) Une lentille convergente a ses bords minces alors qu'une lentille divergente a ses bords épais.
 
2) Un rayon incident passant le centre optique ne subit pas de déviation alors qu'il est dévié s'il passe par les bords.
 
3) Une lentille convergente donne d'un objet renversé situé à $2f$ une image réelle.
 
4) Si un objet $AB$ est placé sur le foyer objet d'une lentille convergente, l'image obtenue est à l'infini.
 
5) La vergence d'une lentille est l'inverse de sa distance focale.

 

Auteur: 

Corrigé Exercice supplémentaire : Mélanges et corps purs - 4e

Classe: 
Quatrième
 

Exercice supplémentaire

Exploitation d'un document
 
L'eau douce est rare dans les contrées désertiques ; or certaines d'entre elles, comme les pays du golfe persique, ont à leur portée d'immenses quantités d'eau de mer.
 
Cette inépuisable réserve d'eau, hélas, est inutilisable telle quelle, en raison de la présence du sel qui la rend impropre à la consommation et à l'irrigation des terres agricoles.
 
Aussi a-t-on pensé obtenir de l'eau douce à partir de l'eau de mer.
 
Le dessalement de l'eau de mer peut être pratiqué dans les usines situées à proximité des rivages.
 
L'eau de mer d'abord est portée à ébullition, puis la vapeur obtenue est liquéfiée. 
 
1) Donnons un titre à ce texte : Le dessalement de l'eau de mer
 
2) La technique utilisée pour rendre l'eau de mer propre à l'irrigation est la distillation.
 
3) Les passages du texte qui relatent les différentes étapes de cette technique sont :
 
"L'eau de mer d'abord est portée à ébullition, puis la vapeur obtenue est liquéfiée"
 
4) Après liquéfaction, on obtient un corps pur ; l'eau.
 
5) Les mesures que l'on doit effectuer pour vérifier la pureté du corps recueilli sont :
 
$-\ \ $ Température d'ébullition
 
$-\ \ $ Température de fusion
 
$-\ \ $ Masse volumique
 
Les résultats attendus sont :
 
$-\ \ $ Température d'ébullition $100^{\circ}C$
 
$-\ \ $ Température de fusion $0^{\circ}C$
 
$-\ \ $ Masse volumique $1000\;kg.m^{-3}$

 

Auteur: 

Corrigé Exercice 20 : Mélanges et corps purs - 4e

Classe: 
Quatrième
 

Exercice 20

Lorsqu'on sort une bouteille d'eau du réfrigérateur, ses parois extérieures se recouvrent de gouttelettes d'eau (buée).
 
Expliquons la provenance de cette buée.
 
Dans le réfrigérateur, la température est très basse. Donc, une bouteille d'eau sortie instantanément de ce réfrigérateur conserve la même température.
 
Ainsi, la vapeur d'eau contenu dans l'air, au contact avec les parois extérieures de la bouteille, se refroidit puis se condense pour enfin donner ces gouttelettes d'eau (buée).
 
On dit aussi que la vapeur d'eau contenu dans l'air s'est liquéfiée, au contact des parois extérieures de la bouteille.

 

Auteur: 

Corrigé Exercice 19 : Mélanges et corps purs - 4e

Classe: 
Quatrième
 

Exercice 19

Une chambre fermée a les dimensions suivantes :
 
Longueur $L=3.50\;m\ $ largeur $\ell=3.20\;m\ $ et hauteur $h=3.10\;m.$
 
1) Calculons le volume d'air contenu dans la salle.
 
Soit $V$ le volume de la salle.
 
Comme l'air remplit toute la salle alors, le volume d'air $V_{\text{air}}$ contenu dans cette salle sera égal au volume $V.$ On a :
$$V_{\text{air}}=V=L\times\ell\times h$$
A.N : $V_{\text{air}}=3.5\times 3.20\times 3.10=34.72$
 
D'où, $\boxed{V_{\text{air}}=34.72\;m^{3}}$
 
2) Déduisons-en les volumes de dioxygène et de diazote contenus dans la salle.
 
L'air contenu dans la salle étant constitué de 1/5 de dioxygène et 4/5 de diazote alors, on a : 
$$V_{_{O_{2}}}=\dfrac{1}{5}V_{\text{air}}\quad\text{et}\quad V_{_{N_{2}}}=\dfrac{4}{5}V_{\text{air}}$$
A.N : $V_{_{O_{2}}}=\dfrac{1}{5}\times 32.72=6.944\quad$ et $\quad V_{_{N_{2}}}=\dfrac{4}{5}\times 32.72=27.776$
 
Ainsi, $\boxed{V_{_{O_{2}}}=6.944\;m^{3}}\quad$ et $\quad \boxed{V_{_{N_{2}}}=27.776\;m^{3}}$

 

Auteur: 

Corrigé Exercice 18 : Mélanges et corps purs - 4e

Classe: 
Quatrième
 

Exercice 18

Recopions et complétons les phrases ci-dessous
 
1) A la pression atmosphérique normale, la vaporisation et la liquéfaction de l'eau pure se produisent à la même température constante égale à $100^{\circ}C.$
 
2) La fusion et la solidification de l'eau pure se produisent à la température constante égale à $0^{\circ}C.$
 
3) Pour un corps pur, la température d'ébullition et la température de fusion sont des constantes physiques.

 

Auteur: 

Corrigé Exercice 17 : Mélanges et corps purs - 4e

Classe: 
Quatrième
 

Exercice 17

Dans un eudiomètre, on mélange $40\;cm^{3}$ de dioxygène et $40\;cm^{3}$ de dihydrogène.
 
On fait jaillir une étincelle électrique dans le mélange.
 
1) Montrons qu'il reste un gaz à la fin de l'opération.
 
Lorsqu'on fait jaillir une étincelle électrique dans le mélange, on va observer simultanément l'apparition d'une flamme sous l'effet du dioxygène suivie d'une détonation provoquée par la présence du dihydrogène.
 
La réaction qui s'est produite a utilisé des volumes de dioxygène $V_{_{O_{2}}}$ et de dihydrogène $V_{_{H_{2}}}$ tels que :
$$V_{_{H_{2}}}=2V_{_{O_{2}}}$$
Ainsi, pour faire réagir tout le dioxygène, on aura aussi besoin d'un volume de dihydrogène $V_{_{H_{2}}}$ tel que :
 
$\begin{array}{rcl} V_{_{H_{2}}}&=&2V_{_{O_{2}}}\\&=&2\times 40\;cm^{3}\\&=&80\;cm^{3}\end{array}$
 
Or, on ne dispose que de $40\;cm^{3}$ de dihydrogène, dans l'eudiomètre.
 
Donc, il n'y a pas assez de dihydrogène pour faire réagir en même temps tout le dioxygène du mélange.
 
Ce qui fait que tout le dioxygène ne va pas réagir.
 
Et par conséquent, il va encore rester du dioxygène dans l'eudiomètre, à la fin de l'opération.
 
2) Déterminons le volume du gaz restant.
 
D'après la question 1), le gaz restant est du dioxygène. Ce qui veut dire que tout le dihydrogène a réagi.
 
Par suite, le volume de dioxygène réagi $V_{_{O_{2}(\text{réagi})}}$ est tel que :
$$V_{_{H_{2}}}=2V_{_{O_{2}(\text{réagi})}}$$
D'où, $V_{_{O_{2}(\text{réagi})}}=\dfrac{V_{_{H_{2}}}}{2}=\dfrac{40\;cm^{3}}{2}=20\;cm^{3}$
 
Le volume de dioxygène restant $V_{_{O_{2}(\text{restant})}}$ sera donc donné par :
$$V_{_{O_{2}(\text{restant})}}=V_{_{O_{2}}}-V_{_{O_{2}(\text{réagi})}}$$
 
A.N : $V_{_{O_{2}(\text{restant})}}=40-20=20$
 
Ainsi, $\boxed{V_{_{O_{2}(\text{restant})}}=20\;cm^{3}}$

 

Auteur: 

Corrigé Exercice 16 : Mélanges et corps purs - 4e

Classe: 
Quatrième
 

Exercice 16

Au cours d'une électrolyse de l'eau pure, un élève a recueilli $12.5\;cm^{3}$ d'un gaz qui rallume un brin incandescent.
 
1) Le gaz qui rallume un brin incandescent est caractéristique du dioxygène.
 
Il a été recueilli au niveau l'anode.
 
2) A l'autre électrode, plus précisément à la cathode, l'élève doit recueillir du dihydrogène.
 
Pour identifier ce gaz, on approche une flamme à la cathode, cela provoque alors une détonation. Ce qui montre la présence du dihydrogène.
 
Précisons son volume.
 
Pour cette expérience, nous savons que le volume de dihydrogène est le double de celui de dioxygène. Ainsi, 
$$\boxed{V_{_{H_{2}}}=2V_{_{O_{2}}}}$$
avec, $V_{_{O_{2}}}=12.5\;cm^{3}$
 
Par suite, $V_{_{H_{2}}}=2\times 12.5=25$
 
D'où, $\boxed{V_{_{H_{2}}}=25\;cm^{3}}$

 

Auteur: 

Corrigé Exercice 15 : Mélanges et corps purs - 4e

Classe: 
Quatrième
 

Exercice 15

Recopions le tableau et indiquons la nature (corps pur, mélange, corps pur simple, corps pur composé) de la substance.
$$\begin{array}{|l|l|}\hline\text{Substance}&\text{Nature de la substance}\\ \hline\text{Eau salée}&\text{mélange}\\ \hline\text{Jus de bissap}&\text{mélange}\\ \hline\text{Pain}&\text{mélange}\\ \hline\text{Dioxyde de carbone}&\text{corps pur composé}\\ \hline\text{Eau distillée}&\text{corps pur composé}\\ \hline\text{Dioxygène}&\text{corps pur simple}\\ \hline\end{array}$$
 
Auteur: 

Corrigé Exercice 14 : Mélanges et corps purs - 4e

Classe: 
Quatrième
 

Exercice 14

Proposons une méthode de séparation appropriée pour chacun des mélanges ci-dessous.
 
1) Fer et soufre : Triage magnétique
 
2) Eau et sucre : Distillation
 
3) Eau et huile : Décantation
 
4) Farine et grain de mil : Tamissage
 
5) Sable et eau : Filtration

 

Auteur: 

Pages